如图,△ABC中,AB=AC,P是底边上的任意一点,PE⊥AC,PD⊥AB,BF是腰AC上的高,E,D,F为垂足.(1)求证PE+PD=BF(2)当P点在BC的延长线上时,PE,PD,BF之间满足什么关系式

来源:学生作业帮助网 编辑:作业帮 时间:2021/09/24 02:37:36

如图,△ABC中,AB=AC,P是底边上的任意一点,PE⊥AC,PD⊥AB,BF是腰AC上的高,E,D,F为垂足.(1)求证PE+PD=BF(2)当P点在BC的延长线上时,PE,PD,BF之间满足什么关系式
如图,△ABC中,AB=AC,P是底边上的任意一点,PE⊥AC,PD⊥AB,BF是腰AC上的高,E,D,F为垂足.(1)求证PE+PD=BF(2)当P点在BC的延长线上时,PE,PD,BF之间满足什么关系式

如图,△ABC中,AB=AC,P是底边上的任意一点,PE⊥AC,PD⊥AB,BF是腰AC上的高,E,D,F为垂足.(1)求证PE+PD=BF(2)当P点在BC的延长线上时,PE,PD,BF之间满足什么关系式
(1)证明:作BG⊥EP,交EP延长线于G,则四边形BGEF是矩形
于是BF=GE ,BG//FE
∵BG//AC
∴∠GBP =∠C(内错角相等)
∵AB=AC
∴∠ABC=∠C(等边对等角)
∴∠ABC=∠GBP(等量代换)
又∠BDP=∠G=90º BP=BP
∴△BDP≌△BGP(AAS)
∴PD=PG
∵GE=PG+PE=PD+PE
∴BF=PD+PE
PE+PF=PD
证明如下:作BG⊥PE,交PE延长线于G,则四边形BGEF是矩形
于是EG=BF,FE‖BG
∵FE‖BG
∴∠PCE=∠PBG(同位角相等)
∵AB=AC
∴∠PBD=∠ACB=∠PCE
∴∠PBG=∠PBD
又∠PDB=∠PGB=90°,PB=PB
∴PBG△≌△PBD(AAS)
∴PD=PG
∵PG=PE+EG,EG=BF
∴PE+PF=PD

【数学证明题】如图,△ABC是等腰三角形,AB=AC,P是底边上任意一点,PE⊥AC于点E,如图,△ABC是等腰三角形,AB=AC,P是底边上任意一点,PE⊥AC于点E,PD⊥AB于点D,BF是腰AC上的高,求证:PE+PD=BF. 如图,△ABC是等腰三角形,AB=AC,P是底边上任意一点,PE⊥AC于点E,PD⊥AB于点D,BF是腰AC上的高,求证:PE+PD=BF. 如图,等腰三角形ABC中顶角A是30度,AB=AC=10P 是底边任意一点,PE+PF在等腰三角形ABC中,顶角A是30度,AB=AC=10,P 是底边上任意一点,PE垂直于PF ,PF垂直于AC,则PE+PHDE值为? 如图,在△ABC中,AB=AC,P底边BC上一点,PD⊥AB于D,PE⊥AC于E,CF⊥AB于F. (1)求证:PD+PE=CF; 如图,在△ABC中,AB=AC,P为底边BC上的一点PD⊥AB于D,PE⊥AC于E,CF⊥AB于F,那么PD+PE与CF相等么 如图等腰△ABC中AB=AC,AD是底边上的高若AB=5cmBC=6cm则AD=___cm 如图,在△ABC中,AB=AC,AD,BE分别是底边BC和腰AC上的高线,延长DA,BE交于点P,若角BAC=110°,求角P的度数 如图,△ABC中,AB=AC,P是底边上的任意一点,PE⊥AC,PD⊥AB,BF是腰AC上的高,E,D,F为垂足.(1)求证PE+PD=BF(2)当P点在BC的延长线上时,PE,PD,BF之间满足什么关系式 如图,在等腰三角形ABC中,AB=AC,AD是底边上的高,AB=5cm,BC=6cm,若P为BC上的一动点,则BP的最小值为()cm. 如图,在等腰三角形ABC中,AB=AC,P为底边BC上一点,求证AC2=AP2+CP•BP 如图,三角形ABC中,AB=AC,P是底边BC上任意一点,PE垂直AB,PF垂直AC,BD垂直AC,PE,PF,BD之间有何关系式,并证明 1)如图①所示,在△ABC中,AB=AC,P为底边BC上一点,PD⊥AB于D,PE⊥AC于E,CF如图①,在等腰△ABC中,底边BC上有任意一点,过点P作PE⊥AC,PD⊥AB,垂足为E、E,再过C作CF⊥AB于点F;(1)求证:PD+PE=CF;(2)若 如图,△ABC中,AB=AC,P是底边BC上一点,PE⊥AB于E,PF⊥AC于F,CD⊥AB于D,观察图形,判断PE、PF、CD的大小关系;若P在BC延长线上,其他条件都不变,再判断PE、PF、CD的大小关系,并说明理由 如图,在△ABC中,AB=AC=4,P是BC上异于B,C的点,求AP²+BP×PC的值.图是一个锐角三角形,顶点是点A,BC是底边 如图,在三角形ABC中,AB=AC,点P是边BC上任意一点,试说明AB^2-AP^2=BP乘CP就是三角形ABC中,AB=AC,P在底边BC上(初二几何,我还没有学相似,请不要用相似来解) 如图,在△ABC中AB=AC,在底边BC上有任意一点P,可证P到两腰的距离之和等于定长(腰上的高),即PD+PE=CF 如图,在三角形ABC中,AB=AC,P为底边BC上一点,PD垂直AB,PE垂直AC,CF垂直AB,那么PD+PE于CF相等么? 如图 在三角形abc中 ac=ac 底边上的高ad=10 e是ac上一点 且 三角形 adc∽△bec be=12 求ab/bd的值